Promoter transgenics reveal multiple gonadotropin-releasing hormone-I-expressing cell populations of different embryological origin in mouse brain.
نویسندگان
چکیده
Gonadotropin-releasing hormone-I (GnRH-I) is thought to be expressed by a single, highly spatially restricted group of neurons, which originate in the olfactory placode and migrate through the nose into the medial septum and hypothalamus from where they control fertility. Transgenic mice bearing a 13.5 kb GnRH-I-lacZ reporter construct were derived and found to express high levels of beta-galactosidase mRNA and protein within the septohypothalamic GnRH neurons in a correct temporal and spatial manner. Unexpectedly, low levels of beta-galactosidase were also present in three further populations of cells within the lateral septum, bed nucleus of the stria terminalis, and tectum. Analysis of wild-type mice with three different GnRH-I antibodies revealed distinct and transient patterns of GnRH-I peptide expression during development in all three of these populations revealed by transgenics. The synthesis of GnRH by cells of the lateral septum was the most persistent and remained until the third postnatal week. Embryonic "small eye" Pax-6 null mice, which fail to develop an olfactory placode, were also examined and shown to have equivalent populations of GnRH-I-immunoreactive cells in the lateral septum, tectum, and bed nucleus of the stria terminalis but none of the migrating cells that form the septohypothalamic GnRH population. These results prove that so-called "ectopic" expression in promoter transgenic lines can reflect authentic developmental patterns of gene expression. They further provide the first demonstration in mammalian brain that multiple neuronal populations of different embryological origin express GnRH-I peptide during embryonic and postnatal development.
منابع مشابه
Intermediary role of kisspeptin in the stimulation of gonadotropin-releasing hormone neurons by estrogen in the preoptic area of sheep brain
Introduction: The role of estrogen in the stimulation of gonadotropin-releasing hormone (GnRH) neurons is clear. These neurons do not express estrogen alpha receptors, so other mediator neurons should be present to transmit the positive feedback effect of estrogen to the GnRH neurons. Kisspeptin neurons have an important role in the stimulation of GnRH neurons, so they can be the mediator of...
متن کاملRegulation of gonadotropin-releasing hormone (GnRH) gene expression by insulin-like growth factor I in a cultured GnRH-expressing neuronal cell line.
A GnRH-expressing neuronal cell line (NLT) was used to determine whether insulin-like growth factor I (IGF-I) regulates GnRH gene expression. A receptor-binding assay demonstrated the expression of IGF-I receptors on NLT cells. Activation of IGF-I receptors induced the Ras/Raf-1/mitogen-activated protein kinase pathway and increased c-fos expression. NLT cells treated with IGF-I underwent cell ...
متن کاملTwo molecular forms of gonadotropin-releasing hormone (GnRH-I and GnRH-II) are expressed by two separate populations of cells in the rhesus macaque hypothalamus.
Gonadotropin-releasing hormone represents the primary neuroendocrine link between the brain and the reproductive axis, and at least two distinct molecular forms of this decapeptide (GnRH-I and GnRH-II) are known to be expressed in the forebrain of rhesus macaques (Macaca mulatta). Although the distribution pattern of the two corresponding mRNAs is largely dissimilar, their expression appears to...
متن کاملHeterogeneous nuclear ribonucleoprotein A/B and G inhibits the transcription of gonadotropin-releasing-hormone 1.
Gonadotropin-releasing hormone 1 (GnRH1) causes the release of gonadotropins from the pituitary to control reproduction. Here we report that two heterogeneous nuclear ribonucleoproteins (hnRNP-A/B and hnRNP-G) bind to the GnRH-I upstream promoter region in a cichlid fish Astatotilapia burtoni. We identified these binding proteins using a newly developed homology based method of mass spectrometr...
متن کاملResurgence of Minimal Stimulation In Vitro Fertilization with A Protocol Consisting of Gonadotropin Releasing Hormone-Agonist Trigger and Vitrified-Thawed Embryo Transfer
Minimal stimulation in vitro fertilization (mini-IVF) consists of a gentle controlled ovarian stimulation that aims to produce a maximum of five to six oocytes. There is a misbelief that mini-IVF severely compromises pregnancy and live birth rates. An appraisal of the literature pertaining to studies on mini-IVF protocols was performed. The advantages of minimal stimulation protocols are report...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 14 شماره
صفحات -
تاریخ انتشار 1999